Structural Analysis of Simple Beams

  -  

Free Solution with Dynamic Diagrams: Displacement, Moment, Shear


12 -1'000,00 daN/m
MENU

Material
E
 
:
 
 
daN/cm
2
Moment of inertia
J
 
:
 
 
cm
4

Beam 1 ⇒ 2
L
 
:
 
 
cm
 
q
 
:
 
 
daN/m

12 DisplacementΔ vertical      = +0 cm(calculated at 0 cm from the node n° 1) DisplacementΔ vertical      =  -0.2226 cm(calculated at 20,0 cm from the node n° 1) DisplacementΔ vertical      =  -0.8317 cm(calculated at 40,0 cm from the node n° 1) DisplacementΔ vertical      =  -1,746 cm(calculated at 60,0 cm from the node n° 1) DisplacementΔ vertical      =  -2,895 cm(calculated at 80,0 cm from the node n° 1) DisplacementΔ vertical      =  -4,216 cm(calculated at 100 cm from the node n° 1) DisplacementΔ vertical      =  -5,657 cm(calculated at 120 cm from the node n° 1) DisplacementΔ vertical      =  -7,175 cm(calculated at 140 cm from the node n° 1) DisplacementΔ vertical      =  -8,737 cm(calculated at 160 cm from the node n° 1) DisplacementΔ vertical      =  -10,32 cm(calculated at 180 cm from the node n° 1) The Maximum Shiftof all the structureΔ vertical      =  -11,90 cm(calculated at 200 cm from the node n° 1)
DISPLACEMENTS

Maximum Displacement of Structure
Δmax = 11,905 cm

Beam (1 ⇒ 2)
Δvert. =
-11,905
  cm
 
Δoriz. =
0
  cm

12 Bending MomentMsd = 1 620 daN*m(calculated at 0.2 m from the node n° 1) Bending MomentMsd = 1 280 daN*m(calculated at 0.4 m from the node n° 1) Bending MomentMsd = 980,0 daN*m(calculated at 0.6 m from the node n° 1) Bending MomentMsd = 720,0 daN*m(calculated at 0.8 m from the node n° 1) Bending MomentMsd = 500,0 daN*m(calculated at 1,00 m from the node n° 1) Bending MomentMsd = 320,0 daN*m(calculated at 1,20 m from the node n° 1) Bending MomentMsd = 180,0 daN*m(calculated at 1,40 m from the node n° 1) Bending MomentMsd = 80,00 daN*m(calculated at 1,60 m from the node n° 1) Bending MomentMsd = 20,00 daN*m(calculated at 1,80 m from the node n° 1) The Maximum Momentof all the structureMsd = 2 000 daN*m(calculated at 0 m from the node n° 1) The Minimum Momentof all the structureMsd = 0 daN*m(calculated at 2,00 m from the node n° 1)
BENDING MOMENT

The Maximum Moment
Msd = 2 000 daN*m

Beam (1 ⇒ 2)
Msd (max) =
2 000
  daN*m
 
Msd (min)  =
0
  daN*m

12 ShearVsd = -1 800 daN(calculated at 20,0 cm from the node n° 1) ShearVsd = -1 600 daN(calculated at 40,0 cm from the node n° 1) ShearVsd = -1 400 daN(calculated at 60,0 cm from the node n° 1) ShearVsd = -1 200 daN(calculated at 80,0 cm from the node n° 1) ShearVsd = -1 000,0 daN(calculated at 100 cm from the node n° 1) ShearVsd = -800,0 daN(calculated at 120 cm from the node n° 1) ShearVsd = -600,0 daN(calculated at 140 cm from the node n° 1) ShearVsd = -400,0 daN(calculated at 160 cm from the node n° 1) ShearVsd = -200,0 daN(calculated at 180 cm from the node n° 1) The Minimum Shearof all the structureVsd = -2 000 daN(calculated at 0 cm from the node n° 1) The Maximum Shearof all the structureVsd = 0 daN(calculated at 200 cm from the node n° 1)
SHEAR

The Maximum Shear
Vsd = -2 000 daN

Beam (1 ⇒ 2)
Vsd (max) =
0
  daN
 
Vsd (min)  =
-2 000
  daN



Su questo sito usiamo i cookies, anche di terze parti. Navigando lo accetti.